# Integration
Integrate[2*Sqrt[2]/(3*a)*x*Sin[2*Pi*x/a]*Sin[3*Pi*x/a], {x, 0, a}]
# Numerical Integration
N[Integrate[4/a^3*r^2*Exp[-2 r/a], {r, 0, a/53600}]]
# Integration over multiple dimensions
Integrate[1/(2*u)*(Q*w*u/(4*Pi*R))^2*((1 - 3*r^2/(5*R^2))^2*Cos[t]^2 +
(1 - 6*r^2/(5*R^2))^2*Sin[t]^2)*r^2*Sin[t], {t, 0, Pi}, {p, 0, 2 Pi}, {r, 0, R}]
# Finding Intersections
pts = NSolve[x*Cot[x] == -y*Coth[y] && {x, y} \[Element] Circle[{0, 0}, 2*Pi], {x, y}]
# A plot of the above intersections
ContourPlot[{x*Cot[x] + y*Coth[y] == 0 , x^2 + y^2 == 4 Pi^2},
{x, -4 Pi, 4 Pi}, {y, -4 Pi, 4 Pi}]
# The Quantum Harmonic Oscillator and some expectation values
Clear[m, \[Omega], \[HBar], n];
(*m=1*)
(*\[Omega]=1*)
(*\[HBar]=1*)
psi[x_, n_] := (m*\[Omega]/(Pi*\[HBar]))^(1/4)*1/Sqrt[2^n*n!]*
HermiteH[n, Sqrt[m*\[Omega]/(\[HBar])]*x]*
Exp[-m*\[Omega]*x^2/(2*\[HBar])]
En[n_] = \[HBar]*\[Omega]*(n + 1/2)
En[0]
psi[x_, t_, n_] := (m*\[Omega]/(Pi*\[HBar]))^(1/4)*1/Sqrt[2^n*n!]*
HermiteH[n, Sqrt[m*\[Omega]/(\[HBar])]*x]*
Exp[-m*\[Omega]*x^2/(2*\[HBar])]*Exp[-i*En[n]*t/\[HBar]]
psi[x, 0]
psi[x, t, 0]
expX[n_] := Integrate[x*psi[x, n]^2, {x, -Infinity, Infinity}]
expX2[n_] := Integrate[x^2*psi[x, n]^2, {x, -Infinity, Infinity}]
DeltaX[n_] := Sqrt[expX2[n] - expX[n]^2]
# Expand expressions
Expand[Sum[
1 + e^(I*(Subscript[K, 3] - Subscript[K, 1]) (Subscript[x, i] -
Subscript[x, k])) +
e^(I*(Subscript[K, 1] - Subscript[K, 2]) (Subscript[x, j] -
Subscript[x, i])) +
e^(I*(Subscript[K, 2] - Subscript[K, 3]) (Subscript[x, k] -
Subscript[x, j])) +
e^(I*(Subscript[K, 1]*(Subscript[x, j] - Subscript[x, i]) +
Subscript[K, 2]*(Subscript[x, k] - Subscript[x, j]) +
Subscript[K, 3]*(Subscript[x, i] - Subscript[x, k]))) +
e^(I*(Subscript[K, 1]*(Subscript[x, k] - Subscript[x, i]) +
Subscript[K, 2]*(Subscript[x, i] - Subscript[x, j]) +
Subscript[K, 3]*(Subscript[x, j] - Subscript[x, k]))), {i,
n}, {j, n}, {k, n}]]
# Simplify expressions, '%' uses the result of the previous input
FullSimplify[%]
A couple key differences to note about Mathematica: The use of square brackets instead of parentheses to contain arguments to functions, function names are capitalized, comments are indicated by '(*' and a closing '*)', and user-defined functions are created using ':=' and underscores on any arguments.
If possible, I encourage use of open source alternatives such as Octave or Python. However, I have to admit that, when it comes to getting integration and algebra of complicated expressions done quickly, nothing beats Mathematica.
Mathematica Basic Functions and Examples
Reading software documentation is boring and Mathematica is a pain so here are some examples of the key functions and their syntax just to get started. I will attempt to update this in the future although I try to find alternatives to Mathematica whenever possible.