The Fourier Transform in Circular Symmetries
The Bessel equation of the first-kind, zero order is defined asWe thus define the Fourier Transform
and its inverse transform
Discretizing the Fourier Transform
Discretizing the Fourier Transform allows us to use the Fast Fourier Transform (FFT) to quickly acquire the Fourier Transform of a continuous function in Python.Discretize time and frequency
where
we can substitute the previously defined quantities to get
Now notice that, in the final result, the constant phase factor is being multiplied by the discrete Fourier Transform (DFT) on the right. We may now use the FFT to calculate the DFT, keeping in mind that we must multiply by the phase factor to get an approximation of the continuous Fourier Transform.
We can define the inverse transform in exactly the same way
where
Python Code
This code works well for messing around with Fourier Transforms.import numpy as np
import matplotlib.pyplot as plt
import scipy.fftpack
# Number of samplepoints
N = 600
# sample spacing
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N)
y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
yf = scipy.fftpack.fft(y)
xf = np.linspace(0.0, 1.0/(2.0*T), N/2)
fig, ax = plt.subplots()
ax.plot(xf, 2.0/N * np.abs(yf[:N//2]))
plt.show()
Friedel's Law
Given a real function, its Fourier transform has the following properties.
- The phase of F, however, is antisymmetric:
Centrosymmetric points are called Friedel or Bijvoet pairs.